Atoms, Vol. 11, Pages 96: Structure and Bonding Patterns in C5H4 Isomers: Pyramidane, Planar Tetracoordinate Carbon, and Spiro Molecules

1 year ago 37

Atoms, Vol. 11, Pages 96: Structure and Bonding Patterns in C5H4 Isomers: Pyramidane, Planar Tetracoordinate Carbon, and Spiro Molecules

Atoms doi: 10.3390/atoms11060096

Authors: Sayon Satpati Tarun Roy Sandip Giri Anakuthil Anoop Venkatesan S. Thimmakondu Subhas Ghosal

We have theoretically investigated nine unusual isomers of the molecular formula C5H4 using coupled cluster (CC) and density functional theory (DFT) methods. These molecules possess non-classical structures consisting of two pyramidanes, three planar tetracoordinate carbon (ptC), and four spiro types of isomers. Both the pyramidanes (tetracyclo-[2.1.0.01,3.02,5]pentane; py-1 and tricyclo-[2.1.0.02,5]pentan-3-ylidene; py-2) are minima on the potential energy surface (PES) of C5H4. Among the three isomers containing ptC, (SP4)-spiro [2.2]pent-1-yne (ptC-2) is a minimum, whereas isomer, (SP4)-spiro [2.2]pent-1,4-diene (ptC-1) is a fourth-order saddle point, and (SP4)-sprio[2.2]pent-1,4-diylidene (ptC-3) is a transition state. The corresponding spiro isomers spiro[2.2]pent-1,4-diene (spiro-1), sprio[2.2]pent-1,4-diylidene (spiro-3) and spiro[2.2]pent-4-en-1-ylidene (spiro-4) are local minima, except spiro[2.2]pent-1-yne (spiro-2), which is a second-order saddle point. All relative energies are calculated with respect to the global minimum (pent-1,3-diyne; 1) at the CCSD(T)/cc-pVTZ level of theory. Quantum chemical calculations have been performed to analyze the bonding and topological configurations for all these nine isomers at the B3LYP/6-311+G(d,p) level of theory for a better understanding of their corresponding electronic structures. ptC-2 was found to be thermodynamically more stable than its corresponding spiro counterpart (spiro-2) and possesses a high dipole moment (μ = 4.64 D). The stability of the ptC structures with their higher spin states has been discussed.

Read Entire Article