Designs, Vol. 8, Pages 128: ML-AKA: An Authentication Protocol for Non-Standalone 5G-Based C-IoT Networks
Designs doi: 10.3390/designs8060128
Authors: Byomakesh Mahapatra Vikash Singh Rituraj Bhattacharjee C. R. Srinivasan
When it comes to the development of 4G and 5G technologies, long-range IoT or machine-to-machine (M2M) communication can be achieved with the help of cellular infrastructure. In non-standalone (NSA) 5G infrastructure, cellular-IoT (C-IoT) devices are attached and authenticated by a 4G core network even if it is connected to a 5G base station. In an NSA-based 5G network, the presence of dual connectivity sometimes raises interoperability and authentication issues due to technological differences between LTE and 5G. An attacker explores these technological differences, introduces the threats, and performs various types of attacks like session hijacking at the interfaces and Man-in-the-Middle (MITM) attacks. With the introduction of these attacks, the attackers exploit the network resources and pinch out various critical information sources. To resolve this issue, the NSA-based C-IoT network must incorporate robust and seamless authentication and authorization mechanisms. This article presents the ML-AKA protocol that is used to enhance interoperability and trust between 4G and 5G networks by using a uniform key-sharing (UKS) mechanism. The proposed ML-AKA protocol is analyzed with the help of the AVISPA tool and validated with the use of Proverif. Further, the proposed protocol is compared with other existing protocols like EPS-AKA and UAKA-D2D, and the outcome shows that the proposed protocol significantly reduces the chances of MITM, DDOS and Spoofing attacks during the interoperability in the NSA-C-IoT network.