Energies, Vol. 16, Pages 1801: On the Hydrothermal Behavior of Fluid Flow and Heat Transfer in a Helical Double-Tube Heat Exchanger with Curved Swirl Generator; Impacts of Length and Position

1 year ago 47

Energies, Vol. 16, Pages 1801: On the Hydrothermal Behavior of Fluid Flow and Heat Transfer in a Helical Double-Tube Heat Exchanger with Curved Swirl Generator; Impacts of Length and Position

Energies doi: 10.3390/en16041801

Authors: Seyed Soheil Mousavi Ajarostaghi Seyed Hossein Hashemi Karouei Mehdi Alinia-kolaei Alireza Ahmadnejad Karimi Morteza Mohammad Zadeh Kurosh Sedighi

The hydrothermal behavior in a helical double-tube heat exchanger is numerically estimated. A new type of swirl generator with two sections, including; outer curved blades and a semi-conical section with two holes in the inner section, is employed. Two geometrical factors, containing the length (L1) and the position of the swirl generator (S), are used for investigation. The calculations were performed by a commercial FVM code, ANSYS FLUENT 18.2. The numerical outcomes show that a shorter length of the swirl generator leads to a better hydrothermal behavior. Accordingly, the model with L1 = 100 mm at m˙ = 0.008 kg/s achieves the maximum thermal performance by about 17.65, 53.85, and 100% enhancement compared to the models L1 = 200, 300 mm, and without swirl generator. Among the different studied positions of the swirl generator, the maximum heat transfer coefficient and average Nusselt number in entire mass flow rates belong to the case with position S = 0.3π mm. Moreover, the thermal performance of the case with S = 0.3π mm is higher than cases with S = 0.1π mm, S = 0.5π mm, and without swirl generator by about 11.11, 53.84, and 100%, respectively.

Read Entire Article