Energies, Vol. 16, Pages 2319: Photosensitivity of Nanostructured Schottky Barriers Based on GaP for Solar Energy Applications
Energies doi: 10.3390/en16052319
Authors: Vasily Rud Doulbay Melebaev Viktor Krasnoshchekov Ilya Ilyin Eugeny Terukov Maksim Diuldin Alexey Andreev Maral Shamuhammedowa Vadim Davydov
This work investigates the surface-barrier photoelectric properties of Au-palladium-n-GaP structures. Research into the visible spectrum region, under the action of both linearly polarized and natural radiation, provides us with new information about the height of the barrier, the interface m-s section, and the GaP band structure. SBs based on GaP (p- and n-type) are helpful for researchers in developing advantageous structures for creating various photovoltaic devices—photodetectors for fiber-optic control of energy systems or possible structures for solar energy. Despite many years of research, issues concerning the band structure of semiconductors based on the phenomenon of photoelectroactive absorption in such surface-barrier structures’ m-s remain urgent in the creation of new high-performance devices. Such structures may also be interesting for creating solar energy systems. They create a thin insulating dielectric layer (usually an oxide layer) in solar cells on SBs between the m and the semiconductor substrate. The advantage of solar cells based on m dielectric semiconductor structures is the strong electric field near the surface of the semiconductor that usually has a direction favoring the collection of carriers created by short-wavelength light. Diffusion of impurities usually results in crystal defects in the active region. There are no such defects in the studied elements. This is also the difference between solar cells on m dielectric structures and elements with diffusion in p-n junctions. We studied the PS of Au-Pd-n-GaP nanostructures to determine the height of the potential barrier qφBo and obtained accurate data on the zone structure of the n-GaP. The PS of nanostructured Au-Pd-n-GaP structures was studied in the visible region of the spectrum. Essential information about the semiconductor’s potential barrier parameters and band structure was obtained. The intermediate Pd nanolayer between Au and GaP has specific effects on the Au-Pd-n-GaP nanostructure, which are of considerable practical and scientific significance for future needs.