Energies, Vol. 16, Pages 2538: Microscopic Visualization Experimental Study on the Effect and Mechanism of Viscosity Reducer on Emulsification of Heavy Oil

1 year ago 35

Energies, Vol. 16, Pages 2538: Microscopic Visualization Experimental Study on the Effect and Mechanism of Viscosity Reducer on Emulsification of Heavy Oil

Energies doi: 10.3390/en16062538

Authors: Youwei Jiang Chao Wang Fusheng Zhang Zongyao Qi Guoliang Liu Jiu Zhao You Zhou Bojun Wang Guofeng Lian Pengcheng Liu

Viscosity-reducer flooding is an effective method to improve oil recovery after the water flooding of heavy oil, and water-in-oil emulsion (W/O emulsion) is easily formed during this process. W/O emulsion has a strong ability to improve mobility ratio and block off high permeability layers, which can effectively improve sweep coefficient and enhance oil recovery. The microscopic visual glass model is mainly used to study the microscopic oil displacement mechanism of dilute oil; however, there are few studies on the emulsification mechanism and influencing factors of heavy oil. The purpose of this paper is to study the mechanism of heavy oil emulsification caused by viscosity reducer at the microscopic level, and the effect of emulsification on heavy oil recovery. The visible physical experiments with the glass microscopic models with different permeability and pore sizes were carried out to study the mechanism and main controlling factors of emulsification and the oil displacement effect of viscosity reducer. On this basis, the software was used to calculate the oil recovery in different areas of the model in different flooding stages, which provides a more intuitive understanding of the oil displacement effect of viscosity reducer. The results showed that there are mainly three types of emulsifications between pores: pore throat-breaking emulsification, blind-end emulsification, and pore channel extrusion emulsification. Hence, the mechanism of the three types of emulsifications and the relationship between droplet size with shear stress have been explored. The shear stress increased with the increase of the shear rate, and the oil droplet size in the model decreased with the increase of the shear. The blocking mechanism of pore throat and the shearing action of viscosity-reducer solution are the main mechanisms of viscous oil emulsification between pores. Generally, the particle size of the emulsified oil droplets formed by the blocking action is large, and it is easy to form pore throat emulsion. The particle size of emulsified oil droplets formed by shearing of viscosity-reducer solution is small. When the pore diameter is smaller than the particle size of oil droplets, the mobility of oil droplets between pores is poor, which means the oil droplets easily accumulate at the blind end to form residual oil. From the results of viscosity-reducer flooding experiments, the heavy oil recovery in each area of the model has been significantly improved after viscosity-reducer flooding compared with water flooding, with the recovery factor in the edge area of the model improving by up to 24.22%. The viscosity-reducer solution has a significant displacement effect on the residual oil in the edge area of the model.

Read Entire Article