Energies, Vol. 16, Pages 4959: Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review

1 year ago 30

Energies, Vol. 16, Pages 4959: Techno-Economic and Environmental Perspectives of Solar Cell Technologies: A Comprehensive Review

Energies doi: 10.3390/en16134959

Authors: Shoaib Nazir Asjad Ali Abdullah Aftab Hafiz Abdul Muqeet Sohrab Mirsaeidi Jian-Min Zhang

This paper provides a review of the implementation of different materials and how they have impacted the efficiency of solar cells. This work elaborates on all solar generation methods that have been developed in the past and covers disparate technologies that are being implemented in different generations. A review of the characterization and factors involved in these processes are also discussed briefly. Furthermore, the economic, environmental, and technical perspectives related to solar cells have also been expounded. This paper also provides some insights into potential research directions that can be pursued in the field of solar energy. Energy demands are increasing all over the world, and substantial amounts of fossil fuels are currently exhausted all over the world in order to meet those needs, which in turn contaminates our environment; moreover, non-renewable sources of energy are diminishing at higher rates as well. Solar energy is of prime importance in all renewable energy sources as the Sun shines at the Earth for 8 to 10 h on average. Thus, heat can be harnessed to generate electricity, but solar cells are not substantially efficient because the materials used in them are quite costly and waste a considerable amount of energy, mostly as heat, which subsequently reduces the efficiency of the cell and increases the overall price as well. These challenges can be dealt with by designing more efficient, economical systems of storage and manufacturing PV cells with high efficacy. Scientists and engineers are more inclined toward advanced technologies and material manipulation to enhance the efficiency of solar energy and reduce its cost. In this regard, substantial research is being carried out, especially on the structure of materials and advanced materials like nanomaterials and quantum dots. Due to their distinct electromechanical and material properties, carbon-based nanomaterials like carbon nanotubes, graphene, fullerene, and nanohybrids are being employed as the electrodes, transport layers, active layers, or intermediate (interfacial) layers of solar cells in this regard.

Read Entire Article