Forests, Vol. 14, Pages 1176: Analysis of the Vigor of Pinus hartwegii Lindl. along an Altitudinal Gradient Using UAV Multispectral Images: Evidence of Forest Decline Possibly Associated with Climatic Change
Forests doi: 10.3390/f14061176
Authors: José Luis Gallardo-Salazar Roberto A. Lindig-Cisneros Leonel Lopez-Toledo Angel R. Endara-Agramont Arnulfo Blanco-García Cuauhtémoc Sáenz-Romero
Future climate forecasts predict major changes that will have negative impacts on the distribution, abundance, and dynamics of forest ecosystems. In Mexico, there is evidence of symptoms of massive forest decline; however, there is no consensus in terms of attributing these symptoms to climate change. This study aimed to provide evidence of forest decline possibly associated with climatic change in the highland pine (Pinus hartwegii Lindl.) populations of the Nevado de Toluca Flora and Fauna Protection Area. Using unmanned aerial vehicles (UAV) equipped with multispectral sensors, the study applied digital photogrammetry techniques, automated tree crown detection algorithms, and calculation of the normalized difference vegetation index (NDVI) and leaf chlorophyll index (LCI) to assess forest health across an altitudinal transect (from 3300 m to the timberline at 4040 m elevation). Climate analysis was conducted with TerraClimate data using mean annual temperature (MAT), April temperature, and Palmer Drought Severity Index (PDSI) from the studied altitudinal transect and its xeric limit. We found that lower altitude populations had significantly higher stress levels, indicating forest decline phenomena, while intermediate altitude populations showed greater vigor of the detected trees. Statistically significant differences in the NDVI and LCI values along the altitudinal gradient provided evidence of forest decline in terms of forest vigor and productivity, with the greatest disturbance found at the lower altitude of the examined forest species. The analysis of the climatic data revealed an increase in April temperature +1.4 °C of the xeric limit of the transect (low altitude) when comparing the reference period, 1961–1990 (mean: 12.17 °C), with the decade prior to our study (2011–2020; mean: 13.57 °C). This would be equivalent to an upward shift in elevation of 280 m of the xeric limit. In addition, the PDSI analysis revealed that droughts are becoming increasingly intense at a rate of 0.06 PDSI units per decade, with greater intensity in the last five years. These findings highlight the negative impacts of climate change on forest ecosystems and the urgent need for alternative forest management and conservation practices to increase resilience and adaptation in the temperate forests of Mexico. This study sets a precedent for further research to improve our understanding of the impacts of climate change on forest ecosystems and the development of sustainable management practices.