Forests, Vol. 14, Pages 616: MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection

1 year ago 33

Forests, Vol. 14, Pages 616: MS-FRCNN: A Multi-Scale Faster RCNN Model for Small Target Forest Fire Detection

Forests doi: 10.3390/f14030616

Authors: Lin Zhang Mingyang Wang Yunhong Ding Xiangfeng Bu

Unmanned aerial vehicles (UAVs) are widely used for small target detection of forest fires due to its low-risk rate, low cost and high ground coverage. However, the detection accuracy of small target forest fires is still not ideal due to its irregular shape, different scale and how easy it can be blocked by obstacles. This paper proposes a multi-scale feature extraction model (MS-FRCNN) for small target forest fire detection by improving the classic Faster RCNN target detection model. In the MS-FRCNN model, ResNet50 is used to replace VGG-16 as the backbone network of Faster RCNN to alleviate the gradient explosion or gradient dispersion phenomenon of VGG-16 when extracting the features. Then, the feature map output by ResNet50 is input into the Feature Pyramid Network (FPN). The advantage of multi-scale feature extraction for FPN will help to improve the ability of the MS-FRCNN to obtain detailed feature information. At the same time, the MS-FRCNN uses a new attention module PAM in the Regional Proposal Network (RPN), which can help reduce the influence of complex backgrounds in the images through the parallel operation of channel attention and space attention, so that the RPN can pay more attention to the semantic and location information of small target forest fires. In addition, the MS-FRCNN model uses a soft-NMS algorithm instead of an NMS algorithm to reduce the error deletion of the detected frames. The experimental results show that, compared to the baseline model, the proposed MS-FRCNN in this paper achieved a better detection performance of small target forest fires, and its detection accuracy was 5.7% higher than that of the baseline models. It shows that the strategy of multi-scale image feature extraction and the parallel attention mechanism to suppress the interference information adopted in the MS-FRCNN model can really improve the performance of small target forest fire detection.

Read Entire Article