Information, Vol. 14, Pages 364: Literature Review: Clinical Data Interoperability Models
Information doi: 10.3390/info14070364
Authors: Rachida Ait Abdelouahid Olivier Debauche Saïd Mahmoudi Abdelaziz Marzak
A medical entity (hospital, nursing home, rest home, revalidation center, etc.) usually includes a multitude of information systems that allow for quick decision-making close to the medical sensors. The Internet of Medical Things (IoMT) is an area of IoT that generates a lot of data of different natures (radio, CT scan, medical reports, medical sensor data). However, these systems need to share and exchange medical information in a seamless, timely, and efficient manner with systems that are either within the same entity or other healthcare entities. The lack of inter- and intra-entity interoperability causes major problems in the analysis of patient records and leads to additional financial costs (e.g., redone examinations). To develop a medical data interoperability architecture model that will allow providers and different actors in the medical community to exchange patient summary information with other caregivers and partners to improve the quality of care, the level of data security, and the efficiency of care should take stock of the state of knowledge. This paper discusses the challenges faced by medical entities in sharing and exchanging medical information seamlessly and efficiently. It highlights the need for inter- and intra-entity interoperability to improve the analysis of patient records, reduce financial costs, and enhance the quality of care. The paper reviews existing solutions proposed by various researchers and identifies their limitations. The analysis of the literature has shown that the HL7 FHIR standard is particularly well adapted for exchanging and storing health data, while DICOM, CDA, and JSON can be converted in HL7 FHIR or HL7 FHIR to these formats for interoperability purposes. This approach covers almost all use cases.