Inventions, Vol. 9, Pages 102: Hierarchical Dynamic Spatio-Temporal Graph Convolutional Networks with Self-Supervised Learning for Traffic Flow Forecasting

4 hours ago 28

Inventions, Vol. 9, Pages 102: Hierarchical Dynamic Spatio-Temporal Graph Convolutional Networks with Self-Supervised Learning for Traffic Flow Forecasting

Inventions doi: 10.3390/inventions9050102

Authors: Siwei Wei Yanan Song Donghua Liu Sichen Shen Rong Gao Chunzhi Wang

It is crucial for both traffic management organisations and individual commuters to be able to forecast traffic flows accurately. Graph neural networks made great strides in this field owing to their exceptional capacity to capture spatial correlations. However, existing approaches predominantly focus on local geographic correlations, ignoring cross-region interdependencies in a global context, which is insufficient to extract comprehensive semantic relationships, thereby limiting prediction accuracy. Additionally, most GCN-based models rely on pre-defined graphs and unchanging adjacency matrices to reflect the spatial relationships among node features, neglecting the dynamics of spatio-temporal features and leading to challenges in capturing the complexity and dynamic spatial dependencies in traffic data. To tackle these issues, this paper puts forward a fresh approach: a new self-supervised dynamic spatio-temporal graph convolutional network (SDSC) for traffic flow forecasting. The proposed SDSC model is a hierarchically structured graph–neural architecture that is intended to augment the representation of dynamic traffic patterns through a self-supervised learning paradigm. Specifically, a dynamic graph is created using a combination of temporal, spatial, and traffic data; then, a regional graph is constructed based on geographic correlation using clustering to capture cross-regional interdependencies. In the feature learning module, spatio-temporal correlations in traffic data are subjected to recursive extraction using dynamic graph convolution facilitated by Recurrent Neural Networks (RNNs). Furthermore, self-supervised learning is embedded within the network training process as an auxiliary task, with the objective of enhancing the prediction task by optimising the mutual information of the learned features across the two graph networks. The superior performance of the proposed SDSC model in comparison with SOTA approaches was confirmed by comprehensive experiments conducted on real road datasets, PeMSD4 and PeMSD8. These findings validate the efficacy of dynamic graph modelling and self-supervision tasks in improving the precision of traffic flow prediction.

Read Entire Article