JCM, Vol. 13, Pages 4007: Performance of Massive Parallel Sequencing-Based Cell-Free DNA Testing in Compromised Pregnancies

2 months ago 26

JCM, Vol. 13, Pages 4007: Performance of Massive Parallel Sequencing-Based Cell-Free DNA Testing in Compromised Pregnancies

Journal of Clinical Medicine doi: 10.3390/jcm13144007

Authors: Maria Antolin Guillermo Tarrasó María Ángeles Sánchez Alberto Plaja Desiree Martínez-Cruz Mar Xunclà Neus Castells Elena Carreras Eduardo Tizzano Elena García-Arumí

Background/Objectives: Non-Invasive prenatal test (NIPT) is used as a universal or contingent test after prior risk assessment. Screening is mainly performed for common trisomies (T21, T13, T18), although other chromosomal anomalies may be detected. Our objective was to study the performance of GWNIPT in the detection of chromosomal abnormalities in pregnancies in which an invasive prenatal study was performed and in early pregnancy losses, in comparison with the reference test. Method: VeriSeqTM NIPT Solution v2, a genome-wide NIPT (GWNIPT), was performed prior to invasive testing in fetal diagnostic study cases (FDS, n = 155) and in early pregnancy losses (EPL, n = 68). Results: In the FDS group, the diagnostic test (QFPCR, array and karyotype) detected anomalies in 32 pregnancies (21%), in twenty of them (61%) also detected by GWNIPT. Eleven of the twelve cases undetected by GWNIPT were balanced translocations (n = 4) or deletions/duplications <7 Mb (n = 7). In the EPL group, GWNIPT detected anomalies in 46% of cases (31/68) but comparison with reference test (QFPCR and karyotype) in products of conception (POC) was only possible in 18 cases. Concordant results between POC and GWNIPT test were obtained in 16 of the 18 cases. In EPL, with GWNIPT testing, common trisomies accounted for 25.8% of cases (8/31), rare trisomies 54.8% (17/31) and microdeletions/duplications 16.1% (5/31). Conclusions: The GWNIPT test may be useful in clinical practice in prenatal and in EPL’s genetic diagnosis when the appropriate sample is not available.

Read Entire Article