JMSE, Vol. 12, Pages 1255: A Method for Defogging Sea Fog Images by Integrating Dark Channel Prior with Adaptive Sky Region Segmentation

1 month ago 19

JMSE, Vol. 12, Pages 1255: A Method for Defogging Sea Fog Images by Integrating Dark Channel Prior with Adaptive Sky Region Segmentation

Journal of Marine Science and Engineering doi: 10.3390/jmse12081255

Authors: Kongchi Hu Qingyan Zeng Junyan Wang Jianqing Huang Qi Yuan

Due to the detrimental impact of fog on image quality, dehazing maritime images is essential for applications such as safe maritime navigation, surveillance, environmental monitoring, and marine research. Traditional dehazing techniques, which are dependent on presupposed conditions, often fail to perform effectively, particularly when processing sky regions within marine fog images in which these conditions are not met. This study proposes an adaptive sky area segmentation dark channel prior to the marine image dehazing method. This study effectively addresses challenges associated with traditional marine image dehazing methods, improving dehazing results affected by bright targets in the sky area and mitigating the grayish appearance caused by the dark channel. This study uses the grayscale value of the region boundary’s grayscale discontinuity characteristics, takes the grayscale value with the least number of discontinuity areas in the grayscale histogram as a segmentation threshold adapted to the characteristics of the sea fog image to segment bright areas such as the sky, and then uses grayscale gradients to identify grayscale differences in different bright areas, accurately distinguishing boundaries between sky and non-sky areas. By comparing the area parameters, non-sky blocks are filled; this adaptively eliminates interference from other bright non-sky areas and accurately locks the sky area. Furthermore, this study proposes an enhanced dark channel prior approach that optimizes transmittance locally within sky areas and globally across the image. This is achieved using a transmittance optimization algorithm combined with guided filtering technology. The atmospheric light estimation is refined through iterative adjustments, ensuring consistency in brightness between the dehazed and original images. The image reconstruction employs calculated atmospheric light and transmittance values through an atmospheric scattering model. Finally, the use of gamma-correction technology ensures that images more accurately replicate natural colors and brightness levels. Experimental outcomes demonstrate substantial improvements in the contrast, color saturation, and visual clarity of marine fog images. Additionally, a set of foggy marine image data sets is developed for monitoring purposes. Compared with traditional dark channel prior dehazing techniques, this new approach significantly improves fog removal. This advancement enhances the clarity of images obtained from maritime equipment and effectively mitigates the risk of maritime transportation accidents.

Read Entire Article