Machines, Vol. 11, Pages 988: Design and Analysis of an Input–Output Linearization-Based Trajectory Tracking Controller for Skid-Steering Mobile Robots

11 months ago 25

Machines, Vol. 11, Pages 988: Design and Analysis of an Input–Output Linearization-Based Trajectory Tracking Controller for Skid-Steering Mobile Robots

Machines doi: 10.3390/machines11110988

Authors: Javier Moreno Emanuel Slawiñski Fernando A. Chicaiza Francisco G. Rossomando Vicente Mut Marco A. Morán

This manuscript presents a control law based on the kinematic control concept and the input–output linearization approach. More specifically, the given approach has the structure of a two-loop controller. A rigorous closed-loop system analysis is presented by using known theory on perturbed systems. By assuming that the desired velocity in the body frame is persistently exciting, the uniform bound of the tracking error in earth coordinates is ensured. A simulation study using practical mobile robot parameters shows the viability of the introduced approach. In addition, two known trajectory tracking controllers are simulated in order to compare the performance of the proposed technique. Better tracking accuracy is obtained with the proposed control approach, even if uncertainties in the knowledge of the friction coefficients are presented.

Read Entire Article