Materials, Vol. 16, Pages 2795: Effect of Different Ameliorants on the Infiltration and Decontamination Capacities of Soil
Materials doi: 10.3390/ma16072795
Authors: Tianyi Sang Aihong Kang Yao Zhang Bo Li Huiwen Mao Heyu Kong
The expansion of urban construction areas can reduce the infiltration rate of rainwater in permeable land, and a large amount of runoff rainwater cannot penetrate the soil. In extreme rainstorm weather, it is easy to cause serious urban waterlogging problems. To improve the infiltration and decontamination ability of green space soil, two types of inorganic ameliorants (i.e., sand and grain shell) and structural ameliorants (i.e., desulfurization gypsum and polyacrylamide) were utilized as amendments in the soil. The influence of the selected ameliorants on the infiltration and decontamination ability was analyzed through a soil infiltration test, soil pore distribution determination and a soil decontamination test. Three parameters including the soil infiltration rate, pore distribution characteristics and pollutant removal rate were proposed. The results showed that sand, grain shells and desulfurization gypsum (FGD gypsum) all enhanced the infiltration capacity of soil, while PAM decreased the infiltration capacity. Meanwhile, mixed sand and grain shell with the FGD gypsum and polyacrylamide can effectively improve the decontamination capacity of the soil. Comprehensive analysis showed that the better improvement combination is 10% sand + 20% grain hull + 0.5 g/kg FGD gypsum + 0.1 g/kg PAM.