Materials, Vol. 16, Pages 6800: A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method

1 year ago 45

Materials, Vol. 16, Pages 6800: A Study to Improve the Reliability of High-Strength Concrete Strength Evaluation Using an Ultrasonic Velocity Method

Materials doi: 10.3390/ma16206800

Authors: Wonchang Kim Taegyu Lee

The ultrasonic pulse velocity (UPV) technique, which is an efficient technique for concrete quality evaluation, can be affected by several factors. Many studies have proposed compressive-strength prediction models based on UPV in concrete; however, few studies have investigated the factors resulting in statistically different UPV results for different models. This study examined the difference between compressive strengths of various concrete specimens calculated by age-dependent and temperature-dependent UPV-based prediction models. Furthermore, a statistical analysis was conducted to evaluate the influence of aggregates and water/cement ratio (design compressive strength), which are said to affect UPV, on the compressive-strength prediction models. The experimental results revealed that the residual compressive strength of concrete after high-temperature exposure was about 9.5 to 24.8% higher than the age-dependent compressive strength. By contrast, after high-temperature exposure, UPV tended to be about 34.5% lower. The compressive strengths and UPVs were significantly different with respect to high temperature, aggregate density, and design compressive strength. The compressive-strength prediction model derived from the regression analysis showed a high R2 (average 0.91) and mean error converged to zero compared to the compressive-strength prediction model without considering these factors. Finally, the differences between the age- and temperature-based compressive-strength prediction models were analyzed according to the corresponding microstructures.

Read Entire Article