Materials, Vol. 17, Pages 5625: Incorporating Wastewater Sludge as a Cement Alternative in Repair Mortar: An Experimental Study of Material Properties
Materials doi: 10.3390/ma17225625
Authors: Jeong-Bae Lee
The global construction industry faces increasing pressure to adopt sustainable practices, particularly in reducing cement-related CO2 emissions. This study investigates the feasibility of using treated wastewater sludge (WWS) as a partial replacement for cement in repair mortars. Treated (A-WWS) and untreated (B-WWS) sludge were evaluated for their effects on workability, mechanical strength, durability, and environmental impact. Flow tests revealed that A-WWS maintained workability similar to the control mixture, while B-WWS reduced flow due to its coarser particles. Compressive strength tests showed that a 10% A-WWS substitution improved strength due to enhanced pozzolanic reactions, while untreated sludge reduced overall strength. Water absorption and bond strength tests confirmed the improved durability of A-WWS mortars. Chemical attack resistance testing demonstrated that A-WWS significantly reduced carbonation depth and chloride penetration, enhancing durability. Microstructural analysis supported these findings, showing denser hydration products in pretreated sludge mixtures. An environmental hazard analysis confirmed low heavy metal content, making sludge-based mortars environmentally safe. Although wastewater sludge shows promise as a partial cement replacement, the processing energy demand remains substantial, necessitating further investigation into energy-efficient treatment methods. This research highlights the potential of pretreated WWS as a sustainable alternative in construction, contributing to reduced cement consumption and environmental impact without compromising material performance. The findings support the viability of sludge-based repair mortars for practical applications in the construction industry.