Mathematics, Vol. 11, Pages 2564: On Consequences of Carreau Nanofluid Model with Dufour–Soret Effects and Activation Energy Subject to New Mass Flux Condition: A Numerical Study

1 year ago 50

Mathematics, Vol. 11, Pages 2564: On Consequences of Carreau Nanofluid Model with Dufour–Soret Effects and Activation Energy Subject to New Mass Flux Condition: A Numerical Study

Mathematics doi: 10.3390/math11112564

Authors: Usman Ali Mawia Osman

Activation energy can be elaborated as the minimal energy required to start a certain chemical reaction. The concept of this energy was first presented by Arrhenius in the year 1889 and was later used in the oil reservoir industry, emulsion of water, geothermal as well as chemical engineering and food processing. This study relates to the impacts of mass transfer caused by temperature differences (Soret) and heat transport due to concentration gradient (Dufour) in a Carreau model with nanofluids (NFs), mixed convection and a magnetic field past a stretched sheet. Moreover, thermal radiation and activation energy with new mass flux constraints are presumed. All chemical science specifications of nanofluid are measured as constant. As a result of the motion of nanofluid particles, the fluid temperature and concentration are inspected, with some physical description. A system of coupled partial differential frameworks is used mathematically to formulate the physical model. A numerical scheme named the Runge–Kutta (R-K) approach along with the shooting technique are used to solve the obtained equations to a high degree of accuracy. The MATLAB R2022b software is used for the graphical presentation of the solution. The temperature of the nanofluid encompasses a quicker rate within the efficiency of a Dufour number. An intensifying thermal trend is observed for thermophoresis and the Brownian motion parameter. The Soret effect causes a decline in the fluid concentration, and the opposite trend is observed for rising activation energy. In addition, the local Nusselt number increases with the Prandtl number. Further, the comparative outcomes for drag force are established, with satisfying agreement with the existing literature. The results acquired here are anticipated to be applied to improving heat exchanger thermal efficiency to maintain thermal balancing control in compact heat density equipment and devices.

Read Entire Article