Membranes, Vol. 14, Pages 256: Role of DHA in a Physicochemical Study of a Model Membrane of Grey Matter
Membranes doi: 10.3390/membranes14120256
Authors: Victor E. Cuenca Viviana I. Pedroni Marcela A. Morini
The present study investigates a multicomponent lipid system that simulates the neuronal grey matter membrane, employing molecular acoustics as a precise, straightforward, and cost-effective methodology. Given the significance of omega-3 polyunsaturated fatty acids in the functionality of cellular membranes, this research examines the effects of reducing 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) content on the compressibility and elasticity of the proposed membrane under physiological conditions. Our results align with bibliographic data obtained through other techniques, showing that as the proportion of PDPC increases in the grey matter membrane model, the system’s compressibility decreases, and the membrane’s elasticity increases, as evidenced by the reduction in the bulk modulus. These results could be interpreted in light of the emerging model of lipid rafts, in which esterified DHA infiltrates and remodels their architecture. We contend that the results obtained may serve as a bridge between biophysics and cellular biology.