Metabolites, Vol. 13, Pages 748: Pseudobombax parvifolium Hydroalcoholic Bark Extract: Chemical Characterisation and Cytotoxic, Mutagenic, and Preclinical Aspects Associated with a Protective Effect on Oxidative Stress

1 year ago 31

Metabolites, Vol. 13, Pages 748: Pseudobombax parvifolium Hydroalcoholic Bark Extract: Chemical Characterisation and Cytotoxic, Mutagenic, and Preclinical Aspects Associated with a Protective Effect on Oxidative Stress

Metabolites doi: 10.3390/metabo13060748

Authors: Tiago Felipe de Senes-Lopes Jefferson Romáryo Duarte da Luz Zaira da Rosa Guterres Eder A. Barbosa Débora Batista Ony Araújo Galdino Marcela Abbott Galvão Ururahy Elizabeth Cristina Gomes dos Santos Jorge A. López Gabriel Araujo-Silva Maria das Graças Almeida

Plants have long been used in traditional medicine to treat illnesses. Nevertheless, their chemical diversity requires studies to establish the extract dosage and its safe use. Pseudobombax parvifolium, an endemic species of the Brazilian Caatinga biome, is commonly used in folk medicine, due to its anti-inflammatory properties related to cellular oxidative stress; however, its biological properties have scarcely been studied. In this study, we chemically characterized the P. parvifolium hydroalcoholic bark extract (EBHE) and evaluated its cytotoxic, mutagenic, and preclinical aspects, as well as its antioxidant effect. Our phytochemical analysis revealed a significative total polyphenol content and identified loliolide for the first time in this species. Cytotoxicity, mutagenicity, and acute oral and repeated dose indicated no toxic effects on cell culture, Drosophila melanogaster, and Wistar rat exposure to different EBHE concentrations, respectively. Furthermore, we observed a significant decrease in lipid peroxidation and a mild hypoglycemic and hypolipidemic effect with repeated oral dosing of EBHE. Although there were no significant changes in glutathione content, we did observe a significant increase in superoxide dismutase at a dose of 400 mg/kg and in glutathione peroxidase at doses of 100, 200, and 400 mg/kg. These findings suggest that EBHE has potential as a source of bioactive molecules, and it can be used safely in traditional medicine and in the development of herbal medicines for application in the public health system.

Read Entire Article