Metals, Vol. 14, Pages 336: Fracture Behaviour of Aluminium Alloys under Coastal Environmental Conditions: A Review

9 months ago 25

Metals, Vol. 14, Pages 336: Fracture Behaviour of Aluminium Alloys under Coastal Environmental Conditions: A Review

Metals doi: 10.3390/met14030336

Authors: Ibrahim Alqahtani Andrew Starr Muhammad Khan

Aluminium alloys have been integral to numerous engineering applications due to their favourable strength, weight, and corrosion resistance combination. However, the performance of these alloys in coastal environments is a critical concern, as the interplay between fracture toughness and fatigue crack growth rate under such conditions remains relatively unexplored. This comprehensive review addresses this research gap by analysing the intricate relationship between fatigue crack propagation, fracture toughness, and challenging coastal environmental conditions. In view of the increasing utilisation of aluminium alloys in coastal infrastructure and maritime industries, understanding their behaviour under the joint influences of cyclic loading and corrosive coastal atmospheres is imperative. The primary objective of this review is to synthesise the existing knowledge on the subject, identify research gaps, and propose directions for future investigations. The methodology involves an in-depth examination of peer-reviewed literature and experimental studies. The mechanisms driving fatigue crack initiation and propagation in aluminium alloys exposed to saltwater, humidity, and temperature variations are elucidated. Additionally, this review critically evaluates the impact of coastal conditions on fracture toughness, shedding light on the vulnerability of aluminium alloys to sudden fractures in such environments. The variability of fatigue crack growth rates and fracture toughness values across different aluminium alloy compositions and environmental exposures was discussed. Corrosion–fatigue interactions emerge as a key contributor to accelerated crack propagation, underscoring the need for comprehensive mitigation strategies. This review paper highlights the pressing need to understand the behaviour of aluminium alloys under coastal conditions comprehensively. By revealing the existing research gaps and presenting an integrated overview of the intricate mechanisms at play, this study aims to guide further research and engineering efforts towards enhancing the durability and safety of aluminium alloy components in coastal environments.

Read Entire Article