Microbiology Research, Vol. 14, Pages 430-447: Emergence of Nontuberculous Mycobacteria at the Human–Livestock–Environment Interface in Zambia
Microbiology Research doi: 10.3390/microbiolres14010032
Authors: Mildred Zulu Sydney Malama Ngula Monde Henson Kainga Rabecca Tembo Florence Mwaba Shereen Ahmed Saad Victor Daka Andrew N. Mukubesa Joseph Ndebe Obi Shambaba Musso Munyeme
The prevalence of nontuberculous mycobacteria (NTM) infections and disease is rising worldwide due to increased research, diagnostics capabilities, and awareness of the disease. There is limited prevalence data for NTM from different sources in Zambia. The aim of this study was to determine the prevalence and species distribution of NTM at the human–livestock–environment interface. A cross-section study was conducted in Namwala, Chipata, and Lundazi Districts of Zambia from April 2020 to December 2021. Sputum samples were collected from tuberculosis presumptive patients from different health centers, cattle tissues were collected from different abattoirs during routine post-mortem, and water samples were collected from different drinking points for humans and animals such as taps, boreholes, wells, rivers, dams and ponds, and then cultured following standard mycobacteriology procedures. Capilia TB-Neo assay was used to identify NTM from the positive cultures. DNA was extracted and the 16S to 23S rRNA (internal transcribed spacer region) (ITS) was amplified and sequenced to identify the species. The overall prevalence of NTM from humans, cattle, and water was 9.1% (72/794, 95% CI 7.2–11.3). The prevalence in humans was 7.8% (33/421, 95% CI 5.54–10.94), in cattle it was 10.6% (15/142, 95% CI 6.2–17.1), and in water it was 10.4% (24/231, 95% CI 6.9–15.2). Our study has shown, for the first time in Zambia, simultaneous isolation of NTM at the human–livestock–environment interface; M. avium complex and M. fortuitum were the most commonly isolated species. M. fortuitum and M. gordonae were isolated from all three sources, while M. abscessus was isolated from humans and water. The isolation of similar NTM species at the interface which are potentially pathogenic is a public health problem which merits further investigation.