Micromachines, Vol. 14, Pages 1122: Bioaffinity Nanoprobes for Foodborne Pathogen Sensing
Micromachines doi: 10.3390/mi14061122
Authors: Tracy Ann Bruce-Tagoe Michael K. Danquah
Bioaffinity nanoprobes are a type of biosensor that utilize the specific binding properties of biological molecules, such as antibodies, enzymes, and nucleic acids, for the detection of foodborne pathogens. These probes serve as nanosensors and can provide highly specific and sensitive detection of pathogens in food samples, making them an attractive option for food safety testing. The advantages of bioaffinity nanoprobes include their ability to detect low levels of pathogens, rapid analysis time, and cost-effectiveness. However, limitations include the need for specialized equipment and the potential for cross-reactivity with other biological molecules. Current research efforts focus on optimizing the performance of bioaffinity probes and expanding their application in the food industry. This article discusses relevant analytical methods, such as surface plasmon resonance (SPR) analysis, Fluorescence Resonance Energy Transfer (FRET) measurements, circular dichroism, and flow cytometry, that are used to evaluate the efficacy of bioaffinity nanoprobes. Additionally, it discusses advances in the development and application of biosensors in monitoring foodborne pathogens.