Nutrients, Vol. 15, Pages 518: Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability

1 year ago 60

Nutrients, Vol. 15, Pages 518: Serum Metabolomics Reveals a Potential Benefit of Methionine in Type 1 Diabetes Patients with Poor Glycemic Control and High Glycemic Variability

Nutrients doi: 10.3390/nu15030518

Authors: Liyin Zhang Keyu Guo Qi Tian Jianan Ye Zhiyi Ding Qin Zhou Xia Li Zhiguang Zhou Lin Yang

Glycemic variability (GV) in some patients with type 1 diabetes (T1D) remains heterogeneous despite comparable clinical indicators, and whether other factors are involved is yet unknown. Metabolites in the serum indicate a broad effect of GV on cellular metabolism and therefore are more likely to indicate metabolic dysregulation associated with T1D. To compare the metabolomic profiles between high GV (GV-H, coefficient of variation (CV) of glucose ≥ 36%) and low GV (GV-L, CV < 36%) groups and to identify potential GV biomarkers, metabolomics profiling was carried out on serum samples from 17 patients with high GV, 16 matched (for age, sex, body mass index (BMI), diabetes duration, insulin dose, glycated hemoglobin (HbA1c), fasting, and 2 h postprandial C-peptide) patients with low GV (exploratory set), and another 21 (GV-H/GV-L: 11/10) matched patients (validation set). Subsequently, 25 metabolites were significantly enriched in seven Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways between the GV-H and GV-L groups in the exploratory set. Only the differences in spermidine, L-methionine, and trehalose remained significant after validation. The area under the curve of these three metabolites combined in distinguishing GV-H from GV-L was 0.952 and 0.918 in the exploratory and validation sets, respectively. L-methionine was significantly inversely related to HbA1c and glucose CV, while spermidine was significantly positively associated with glucose CV. Differences in trehalose were not as reliable as those in spermidine and L-methionine because of the relatively low amounts of trehalose and the inconsistent fold change sizes in the exploratory and validation sets. Our findings suggest that metabolomic disturbances may impact the GV of T1D. Additional in vitro and in vivo mechanistic studies are required to elucidate the relationship between spermidine and L-methionine levels and GV in T1D patients with different geographical and nutritional backgrounds.

Read Entire Article