Polymers, Vol. 15, Pages 1677: Synthesis and Characterization of Spirocyclic Mid-Block Containing Triblock Copolymer
Polymers doi: 10.3390/polym15071677
Authors: Suraj Aswale Minji Kim Dongwoo Kim Aruna Kumar Mohanty Heung Bae Jeon Hong Y. Cho Hyun-jong Paik
Polymers containing cyclic derivatives are a new class of macromolecular topologies with unique properties. Herein, we report the synthesis of a triblock copolymer containing a spirocyclic mid-block. To achieve this, a spirocyclic polystyrene (cPS) mid-block was first synthesized by atom transfer radical polymerization (ATRP) using a tetra-functional initiator, followed by end-group azidation and a copper (I)-catalyzed azide-alkyne cycloaddition reaction. The resulting functional cPS was purified using liquid chromatography techniques. Following the esterification of cPS, a macro-ATRP initiator was obtained and used to synthesize a poly (methyl methacrylate)-block-cPS-block-poly (methyl methacrylate) (PMMA-b-cPS-b-PMMA) triblock copolymer. This work provides a synthetic strategy for the preparation of a spirocyclic macroinitiator for the ATRP technique and as well as liquid chromatographic techniques for the purification of (spiro) cyclic polymers.