Processes, Vol. 12, Pages 2883: Reactivation of Abandoned Oilfields for Cleaner Energy Generation: Three-Dimensional Modelling of Reservoir Heterogeneity and Geometry

5 days ago 26

Processes, Vol. 12, Pages 2883: Reactivation of Abandoned Oilfields for Cleaner Energy Generation: Three-Dimensional Modelling of Reservoir Heterogeneity and Geometry

Processes doi: 10.3390/pr12122883

Authors: Benjamin Michael Storey Richard H. Worden David D. McNamara John Wheeler Julian Parker Andre Kristen

With the changing picture of global energy supplies and the shift toward the energy transition, it has never been more important to look for alternative sources of energy. Globally there are tens of thousands of abandoned oil fields with considerable reserves left behind. These have the potential to be reactivated to become an energy supply that is cleaner than conventional oil and gas. This can be achieved by the use of in situ combustion and the subsequent exploitation of the inherent increase in temperature and pressure to produce geothermal energy, allied to sequestration of the mixture of produced fluids. In situ combustion (ISC) has conventionally been used as an enhanced oil recovery technique, with a high failure rate that has been recently attributed to poor reservoir selection and project design. We suggest that the failure of many earlier ISC projects is due to insufficient appreciation of how the subsurface geology affects the process. With the use of computer numerical modelling, we aim to ascertain how the geometry and heterogeneity of the reservoir control the success of the process. Here we employ simple three-dimensional sector models to assess a variety of different petrophysical heterogeneities, within a set of different reservoir geometries, on the temperature, velocity, propagation stability and enthalpy rate. These models illustrate that the biggest impact on success of the ISC process for geothermal energy generation, as a function of temperature and enthalpy, is the location of the wells relative to the heterogeneities and the scale of heterogeneities. Metre-scale heterogeneities do not have a significant effect on this. Instead, the biggest contributor to the propagation stability and direction of the fire front is the presence of a large-scale (10 s to 100 s of metres) heterogeneities, such as channels, or the geometry of a tilted fault block; both have a strong control over the direction of the propagation, and therefore are important factors with regards to well placement.

Read Entire Article