Remote Sensing, Vol. 15, Pages 2691: Integration of DInSAR-PS-Stacking and SBAS-PS-InSAR Methods to Monitor Mining-Related Surface Subsidence
Remote Sensing doi: 10.3390/rs15102691
Authors: Yuejuan Chen Xu Dong Yaolong Qi Pingping Huang Wenqing Sun Wei Xu Weixian Tan Xiujuan Li Xiaolong Liu
Over-exploitation of coal mines leads to surface subsidence, surface cracks, collapses, landslides, and other geological disasters. Taking a mining area in Nalintaohai Town, Ejin Horo Banner, Ordos City, Inner Mongolia Autonomous Region, as an example, Sentinel-1A data from January 2018 to October 2019 were used as the data source in this study. Based on the high interference coherence of the permanent scatterer (PS) over a long period of time, the problem of the manual selection of ground control points (GCPs) affecting the monitoring results during refinement and re-flattening is solved. A DInSAR-PS-Stacking method combining the PS three-threshold method (the coherence coefficient threshold, amplitude dispersion index threshold, and deformation velocity interval) is proposed as a means to select ground control points for refinement and re-flattening, as well as a means to obtain time-series deformation by weighted stacking processing. A SBAS-PS-InSAR method combining the PS three-threshold method to select PS points as GCPs for refinement and re-flattening is also proposed. The surface deformation results monitored by the DInSAR-PS-Stacking and SBAS-PS-InSAR methods are analyzed and verified. The results show that the subsidence location, range, distribution, and space–time subsidence law of surface deformation results obtained by DInSAR-PS-Stacking, SBAS-PS-InSAR, and GPS methods are basically the same. The deformation results obtained by these two InSAR methods have a good correlation with the GPS monitoring results, and the MAE and RMSE are within the acceptable range. The error showed that the edge of the subsidence basin was small and that the center was large. Both methods were found to be able to effectively monitor the coal mine, but there were also shortcomings. DInSAR-PS-Stacking has a strong ability to monitor the settlement center. SBAS-PS-InSAR performed well in monitoring slow and small deformations, but its monitoring of the settlement center was insufficient. Considering the advantages of these two InSAR methods, we proposed fusing the time-series deformation results obtained using these two InSAR methods to allow for more reliable deformation results and to carry out settlement analysis. The results showed that the automatic two-threshold (deformation threshold and average coherence threshold) fusion was effective for monitoring and analysis, and the deformation monitoring results are in good agreement with the actual situation. The deformation information obtained by the comparison, and fusion of multiple methods can allow for better monitoring and analysis of the mining area surface deformation, and can also provide a scientific reference for mining subsidence control and early disaster warning.