Robotics, Vol. 12, Pages 159: Minimum Energy Utilization Strategy for Fleet of Autonomous Robots in Urban Waste Management

9 months ago 20

Robotics, Vol. 12, Pages 159: Minimum Energy Utilization Strategy for Fleet of Autonomous Robots in Urban Waste Management

Robotics doi: 10.3390/robotics12060159

Authors: Valeria Bladinieres Justo Abhishek Gupta Tobias Fritz Umland Dietmar Göhlich

Many service robots have to operate in a variety of different Service Event Areas (SEAs). In the case of the waste collection robot MARBLE (Mobile Autonomous Robot for Litter Emptying) every SEA has characteristics like varying area and number of litter bins, with different distances between litter bins and uncertain filling levels of litter bins. Global positions of litter bins and garbage drop-off positions from MARBLEs after reaching their maximum capacity are defined as task-performing waypoints. We provide boundary delimitation for characteristics that describe the SEA. The boundaries interpolate synergy between individual SEAs and the developed algorithms. This helps in determining which algorithm best suits an SEA, dependent on the characteristics. The developed route-planning methodologies are based on vehicle routing with simulated annealing (VRPSA) and knapsack problems (KSPs). VRPSA uses specific weighting based on route permutation operators, initial temperature, and the nearest neighbor approach. The KSP optimizes a route’s given capacity, in this case using smart litter bins (SLBs) information. The game-theory KSP algorithm with SLBs information and the KSP algorithm without SLBs information performs better on SEAs lower than 0.5 km2, and with fewer than 50 litter bins. When the standard deviation of the fill rate of litter bins is ≈10%, the KSP without SLB is preferred, and if the standard deviation is between 25 and 40%, then the game-theory KSP is selected. Finally, the vehicle routing problem outperforms in SEAs with an area of 0.5≤5 km2, 50–450 litter bins, and a fill rate of 10–40%.

Read Entire Article