Sensors, Vol. 23, Pages 1235: Circulant Singular Spectrum Analysis and Discrete Wavelet Transform for Automated Removal of EOG Artifacts from EEG Signals
Sensors doi: 10.3390/s23031235
Authors: Jammisetty Yedukondalu Lakhan Dev Sharma
Background: Portable electroencephalogram (EEG) systems are often used in health care applications to record brain signals because their ease of use. An electrooculogram (EOG) is a common, low frequency, high amplitude artifact of the eye blink signal that might confuse disease diagnosis. As a result, artifact removal approaches in single EEG portable devices are in high demand. Materials: Dataset 2a from the BCI Competition IV was employed. It contains the EEG data from nine subjects. To determine the EOG effect, each session starts with 5 min of EEG data. This recording lasted for two minutes with the eyes open, one minute with the eyes closed, and one minute with eye movements. Methodology: This article presents the automated removal of EOG artifacts from EEG signals. Circulant Singular Spectrum Analysis (CiSSA) was used to decompose the EOG contaminated EEG signals into intrinsic mode functions (IMFs). Next, we identified the artifact signal components using kurtosis and energy values and removed them using 4-level discrete wavelet transform (DWT). Results: The proposed approach was evaluated on synthetic and real EEG data and found to be effective in eliminating EOG artifacts while maintaining low frequency EEG information. CiSSA-DWT achieved the best signal to artifact ratio (SAR), mean absolute error (MAE), relative root mean square error (RRMSE), and correlation coefficient (CC) of 1.4525, 0.0801, 18.274, and 0.9883, respectively. Comparison: The developed technique outperforms existing artifact suppression techniques according to performance measures. Conclusions: This advancement is important for brain science and can contribute as an initial pre-processing step for research related to EEG signals.