Veterinary Sciences, Vol. 10, Pages 81: Postnatal Changes of Somatostatin Expression in Hippocampi of C57BL/6 Mice; Modulation of Neuroblast Differentiation in the Hippocampus
Veterinary Sciences doi: 10.3390/vetsci10020081
Authors: Dae Young Yoo Woosuk Kim Hyo Young Jung In Koo Hwang
(1) Background: Somatostatin (SST) exhibits expressional changes in the brain during development, but its role is not still clear in brain development. (2) Methods: We investigated postnatal SST expression and its effects on hippocampal neurogenesis via administering SST subcutaneously to P7 mice for 7 days. (3) Results: In the hippocampal CA1 region, SST immunoreactivity reaches peak at P14. However, SST immunoreactivity significantly decreased at P21. In the CA2/3 region, the SST expression pattern was similar to the CA1, and SST-immunoreactive cells were most abundant at P14. In the dentate gyrus, SST-immunoreactive cells were most abundant at P7 and P14 in the polymorphic layer; as in CA1-3 regions, the immunoreactivity decreased at P21. To elucidate the role of SST in postnatal development, we administered SST subcutaneously to P7 mice for 7 days. In the subgranular zone of the hippocampal dentate gyrus, a significant increase was observed in immunoreactivity of doublecortin (DCX)-positive neuroblast after administration of SST.; (4) Conclusions: SST expression in the hippocampal sub-regions is transiently increased during the postnatal formation of the hippocampus and decreases after P21. In addition, SST is involved in neuroblast differentiation in the dentate gyrus of the hippocampus.